
MDASH Molecular Dynamics Analysis
December 2017

Matt Ellis, Brian Hudson, David Salt and David Whitley

This manual is for MDASH, version 3.1.0.

Copyright c© 2017 Centre for Molecular Design, University of Portsmouth.

i

Table of Contents

1 Overview . 1

2 Running the program . 2
2.1 Command line interface . 2
2.2 Graphical interface . 4
2.3 Amberdash . 5
2.4 Replica exchange trajectories . 5

3 File Formats . 6
3.1 Input Files . 6
3.2 Output Files . 6

4 Installation . 11
4.1 Obtaining the software . 11
4.2 Compiling and installing the programs . 11
4.3 Documentation . 11
4.4 Authors . 11
4.5 Contact . 11

1 Overview

DASH is a technique for analysing molecular dynamics (MD) simulations based on the torsion
angles of rotatable bonds. It extracts the major features for each torsion angle and combines
these into states that describe the conformation of the whole molecule. By ignoring high-
frequency oscillations within the DASH states, a compressed representation of an MD trajectory
is obtained as the sequence of DASH states visited during the simulation, together with the
length of time spent in each state. The latest version of the DASH algorithm is implemented
here as a C++ program mdash.

The DASH algorithm takes care to treat the circular nature of the torsion angle data correctly
and uses circular statistics to describe the DASH states. The main steps in the DASH algorithm
are as follows.

• To remove some of the high-frequency noise, the initial torsion angles are replaced by moving
average values. These are calculated over a window of user-specified length, typically 11
time steps.

• A discrete set of states for the individual torsion angles is identified by examining their
histograms. Local maxima in the distribution of each torsion angle are located and states
are defined by placing cut-points midway between adjacent maxima. The trajectory of each
torsion angle is then represented by the sequence of states visited at each time step.

• A smoothing process is applied to eliminate short-lived states. The state sequence for
each torsion angle is considered as a series of bouts in which the trajectory remains in a
single state. Bouts of short duration (less than the bout length parameter) are removed by
dividing them in half and assigning the two halves to the preceding and following bouts.

• The torsion angle state sequences are then combined into state sequences for the whole
molecule. For example, if torsion T1 has state sequence 1, 1, 2, 1, 1, 1, 2, . . . and torsion
T2 has state sequence 1, 1, 3, 2, 1, 1, 1, . . . then the combined sequence is (1,1), (1,1),
(2,3), (1,2), (1,1), (1,1), (2,1),. . . Trajectories typically remain in the same state for long
periods, leading to long constant runs, so the sequences are compressed by writing them in
the form of bouts (s1, b1), (s2, b2), ..., where the ith bout consists of bi time steps in state si.

• The combined sequences are smoothed to remove short-lived states in the same way as
the individual torsion sequences. This determines a final set of DASH states, but tends to
remove too much dynamic detail as it removes all bouts of length less than the smoothing
level σ. Therefore a final roughening process is applied, using a bout length ρ < σ, in which
bouts of the DASH states with length between ρ and σ are reinstated.

For further details see:

• D. W. Salt, B. D. Hudson, L. Banting, M. J. Ellis and M. G. Ford, DASH: A novel analysis
method for molecular dynamics simulation data. Analysis of ligands of PPAR-gamma, J.
Med. Chem., 48, 3214-3220, 2005.

1

2 Running the program

The program was originally called dash, but since its first release the Debian Almquist shell,
also named dash, has become the default shell on Debian based distributions such as Ubuntu.
To avoid a name clash, releases will henceforth be named mdash-x.y.z and the main program is
now mdash. The main algorithm, however, will continue to be known as the DASH algorithm.

2.1 Command line interface

The syntax for the mdash command is:

mdash Launch the graphical interface.

mdash [options] -i input_file -o output_file

Run mdash from the command line with the specified options.

mdash [options] -P parameter_file -T trajectory_file -o output_file

Run mdash from the command line on an Amber trajectory specified by seed.

mdash -S|--similarity file1 file2

Calculate similarities between states in two mdash output files.

Options:

-h [--help]

Display a help message.

-v [--version]

Display the program version number.

-q [--quiet]

Run quietly with no progress messages.

-D [--debug]

Write internal details to stderr.

-i [--input] file

Specify input file.

-o [--output] file

Specify output file.

-w [--window] winsize

Set the moving average window size (an odd integer) [default 11].

-b binsize

Set the bin size for single variable distributions [default 4].

-u runlen Set the run length defining single-variable maxima [default 3]. A local maximum
is preceded by at least runlen increasing bin values and followed by at least runlen
decreasing values.

-f fmax Set the minimum value for a single variable maximum, specified as a percentage of
the number of frames in the trajectory [default 2.4].

-m smin Set the minimum distance allowed between single-variable maxima [default 48]. Lo-
cal maxima closer than this are merged into a single pseudo-maximum midway
between them.

-l boutlen

Set the minimum bout length defining a single variable state [default 20].

2

-s smooth Set the smoothing level [default 40].

-r rough Set the roughening level [default 20].

-t [--timestep] step

Specify the inter-frame timestep in picoseconds [default 1].

-d [--distances]

Process distance, rather than angular, data. This is an experimental feature, not
intended for general use at present.

-p [--pca]

Calculate principal components.

-a [--pca-autoscale] [=[0|1]]

Use autoscaled variables for pca [default 1].

-x [--repex]

Process a replica exchange trajectory.

-y [--repex-fraction] arg

The fraction of frames defining replica exchange states [default 0.01].

-H [--write-histogram]

Write histograms of the single variable distributions.

-C [--write-combined]

Write the combined states and trajectory.

-S [--write-smoothed]

Write the smoothed states and trajectory.

-F [--write-sequence]

Write the full state sequence. This produces copious output and is intended only
for debugging.

-L [--write-labelled-data] filename

Write input data with state labels appended in final column to filename.

-S [--similarity] arg (=file1 file2) write similarities between

states in two mdash output files to stdout

Amber Interface Options:

-P [--amber-parm] arg

AMBER parameter (topology) file

-T [--amber-traj] arg

AMBER trajectory (netcdf) file(s). Accepts a single file or a comma-separated list
of files.

-R [--residues] arg

Range of residues to analyse. A comma-separated list of individual residue numbers
or ranges N-M. If omitted, all residues are analysed.

-D [--dihedrals] arg (=phi,psi)

Dihedral types to analyse. Accepts all types recognized by cpptraj.

-N [--snap]

Write PDB files for frames representing DASH states

-k [--keep-mdash-input]

Retain the mdash input file

3

-j [--keep-cpptraj]

Retain intermediate cpptraj files

2.2 Graphical interface

The mdash command without any options launches the graphical interface. The workflow con-
sists of loading a DASH input file or an AMBER parameter and trajectory file using the File

menu, setting the options for the DASH algorithm by selecting Dash|Options and running
the algorithm with Dash|Run. The main window displays progress messages and information
about trajectories loaded into the program. The results of each run are displayed in a separate
MDASH Viewer window. Multiple viewer windows may be open simultaneously to compare
different trajectories or the effect of different options.

The Viewer window contains the following panels.

• Summary

A brief listing of the input trajectory, the program options and the number of states found.

• Trajectory

A plot of the DASH states visited during the trajectory against time.

• Frequencies

A histogram of the DASH state frequencies. Each bout is shown in a separate colour.

• Bouts

A grid showing the number of frames spent in each bout for the DASH states. This is the
numerical data used to plot the Frequencies panel.

• Dash States

A grid with a row for each state, showing:

− the mean torsion angles for the state

− the number and percentage of frames spent in the state

− the representative frame for the state

− the RMSD between the mean torsion angles and the angles of the representative frame

• Similarity

A grid showing the similarities between the Dash states. Select the appropriate tab to
display the either the circular or cosine similarities, which are calculated as follows.

Each dash state is represented by the vector of mean torsion angles x = (x1, . . . , xn). The
distance between two states x and y is

D(x, y) =
√
d(x1, y1)2 + . . . + d(xn, yn)2

where the distance between two angles (in degrees) is

d(xi, yi) = min(|xi − yi|, 360− |xi − yi|).
As this angular distance lies in [0, 180], the distance between two states lies in [0, 180

√
n].

So we define the circular similarity between two states as

S(x, y) = 1−D(x, y)/180
√
n

which lies in [0, 1].

The cosine similarity between states x and y is defined as S(x, y) = (x.y)/
√
|x||y|, which

lies in [−1, 1].
• Torsion Histograms

Plots of the histograms of each torsion angle. The Next and Previous buttons navigate
through the torsion angles. The number of plots on each page is controlled by selecting
Options|Torsion Histogram Grid from the menu.

4

• Torsion States

A list of the states found for each torsion angle. These should be compared with the Torsion
Histograms to check that a reasonable set of torsion states has been found.

• Scree Plot

The principal component eigenvalues. The variance explained by each principal component
is shown in red, the cumulative variance explained in green.

• PCA

A 3D plot of the principal components, with states drawn in separate colours. The left
mouse button rotates the plot and the R key resets the view. To change the components
displayed select Options|PCA Plot.

The File|Save menu in the Viewer window allows the results displayed in the panels to be
saved, either as text files or PNG images as appropriate. Some of the images can be saved only
when they are visible, otherwise their selection is disabled in the menu.

The manual can be viewed by selecting Help|Manual in the main window.

2.3 Amberdash

The Perl script amberdash runs mdash on trajectories generated by Amber (http://ambermd.
org). Documentation in POD format is included in the file. To read it use the command

perldoc amberdash

The script calls mdash and cpptraj. If they are not on the PATH, specify their full pathnames
at the top of the script.

Much of the functionality of amberdash is now integrated into the main mdash program.

2.4 Replica exchange trajectories

For pseudo-trajectories formed by concatenating sections of replica exchange molecular dynam-
ics, initial tests showed the steps in the DASH algorithm that assume the input is from a single
time series (i.e. the smoothing) are inappropriate. The combined states can be calculated as
usual, but replica exchange trajectories typically produce large numbers of states, many of which
are sparsely populated. Therefore, when the -x option is used, a set of replica exchange states is
defined as the subset of the combined states that contain at least a minimum fraction of frames,
specified by the -y option. In this case the replica exchange state trajectory in the output file
is essentially the combined state trajectory, with sparsely populated states marked as state 0.

5

http://ambermd.org
http://ambermd.org

3 File Formats

Some sample input and output files are provided in the examples directory.

3.1 Input Files

The input files for mdash are whitespace-separated ASCII text files containing the values of ntor
torsion angles, in degrees, at nstep time steps, with the values for each torsion angle in a single
column and the values for each time step in a single row.

Input files may be compressed with gzip or bzip2. In this case the file type is inferred from the
filename extension, which must be .gz or .bz2, respectively.

3.2 Output Files

Following two header lines containing the version number and a timestamp, the DASH output
file is divided into blocks separated by tags in square brackets. The first two sections contain
details of the input trajectory and the DASH options.

DASH, version 2.12

Wed Nov 4 08:57:25 2015

[TRAJECTORY]

file : /home/dw/projects/dash/svn/trunk/examples/tzd.in

variables : 8

frames : 25000

[OPTIONS]

data : angles

timestep : 1 ps

window : 11

binsize : 4

runlen : 3

fmax : 2.4

smin : 48

boutlen : 20

smooth : 40

rough : 20

6

The next section describes the states for the individual variables. For each variable, DASH prints
the list of local maxima in the torsion angle distribution; the single-variable states, numbered
sequentially from 1; the number of state transitions during the trajectory; and the number
of frames where the single-variable states are reassigned by smoothing the trajectories, with
the corresponding proportion of the total number of frames in parentheses. For example, the
following extract shows a single state for torsion ANGLE 1 and three states for ANGLE 2, with
one state wrapping around +/-180.

[ANGLE_1]

maxima : -62

states : 1 = [-180, 180)

transitions : 1

reassigned : 0 (0.00%)

[ANGLE_2]

maxima : -178, -58, 66

states : 1 = [-180, -118), 2 = [-118, 4), 3 = [4, 124), 1 = [124, 180)

transitions : 27

reassigned : 1 (0.01%)

If the -H flag is used, a histogram of the distribution of angles is printed within each torsion
angle block. The following example shows a case where the torsion angle has frequencies 2330
in the [-180,-176) bin, 1466 in the [-176,-172) bin, etc.

[ANGLE_1_HISTOGRAM]

Bin Count

-180 2330

-176 1466

-172 408

...

168 54

172 287

176 1284

The next section summarizes the result of the DASH algorithm, giving the number of combined
states, the number of final states after the smoothing and roughening procedures, and the number
of frames where the combined state is reassigned during this process, with the corresponding
percentage of the total number of frames in parentheses.

[SUMMARY]

combined states : 82

final states : 55

transitions : 269

reassignments : 1602 (6.41%)

The DASH states and their frequencies in the trajectory are listed next. Each state is defined
as a sequence of individual torsion angle states. In the following example, the first DASH state
corresponds to state 2 in T6 and to state 1 in each of the other torsion angles.

7

[DASH_STATES]

1 1 1 1 1 1 2 1 1

2 1 1 1 1 1 3 1 1

3 1 1 1 1 1 3 2 1

...

53 1 3 2 1 2 1 2 1

54 1 3 2 1 2 3 2 1

55 1 3 2 1 3 3 2 1

If the -R flag is used, the trajectory frames that best represent each DASH state are identified.
These are the rows of the input file, numbered from 1, with the smallest RMSD from the mean
angles for the DASH state.

This is followed by two blocks of summary statistics: the circular means and standard de-
viations of the torsion angles in each Dash state. We emphasize that these are both circular
statistics.

[DASH_STATE_DISTRIBUTION]

State Frames %Frames Rep.Frame RMSD

1 265 1.06 9700 5.25

2 243 0.97 9914 7.15

3 46 0.18 9891 6.48

...

53 396 1.58 11422 4.49

54 360 1.44 1514 4.76

55 116 0.46 13050 7.56

[DASH_STATE_MEANS]

1 -60.41 -179.58 -81.36 116.31 -64.51 76.34 -118.17 -9.24

2 -60.15 -176.83 -76.57 113.39 -64.85 178.57 -81.61 2.67

3 -62.07 -177.93 -75.38 110.89 -61.97 -176.81 87.02 -17.91

...

53 -67.23 67.36 79.28 64.36 60.81 -80.63 114.09 22.25

54 -66.61 67.07 78.13 64.40 63.21 176.05 79.07 1.98

55 -66.66 66.04 81.55 87.70 178.57 -175.36 72.41 -2.04

[DASH_STATE_STANDARD_DEVIATIONS]

1 14.04 11.17 23.73 15.04 9.99 11.15 12.33 22.90

2 14.19 13.56 35.19 19.73 19.76 27.02 48.91 49.62

3 12.52 10.61 14.07 14.88 12.13 13.45 44.36 65.29

...

53 13.98 15.57 31.09 14.04 9.97 12.49 12.08 14.19

54 14.13 19.23 16.70 20.83 17.38 13.32 28.62 46.80

55 12.16 11.07 55.95 31.46 12.50 33.58 56.68 55.79

The DASH-compressed trajectory is defined by two columns containing DASH state numbers
and their corresponding bout lengths. This example shows a trajectory spending 21 frames in
state 21, followed by 44 frames in state 10, 50 frames in state 11, etc.

[DASH_STATE_TRAJECTORY]

State Frames Cumulative

8

21 21 21

10 44 65

11 50 115

...

30 23 24848

29 54 24902

30 98 25000

[DASH_STATE_TRANSITIONS]

269

[DASH_STATE_REASSIGNMENTS]

1602 (6.41%)

The final section collects the bouts spent in each DASH state. Here there are two bouts, of
length 190 and 75, in state 1, three bouts, of length 69, 105 and 69, in state 2, etc.

[DASH_STATE_BOUTS_(FRAMES)]

1 190 75

2 69 105 69

3 46

...

52 140 33 150 389

53 69 95 232

54 33 77 86 81 83

55 38 78

If the inter-frame timestep differs from the default value (1 ps) then a similar block is printed
listing the times (ps) spent in each bout.

If the -C flag is used, the details of the initial combined states before the smoothing and rough-
ening procedures take place are printed. This output is placed in blocks with the same format
as the corresponding blocks for the Dash states.

The combined states with zero frequency after smoothing are removed to leave a final set of
states, which are renumbered at this point. If the -S flag is used, the details of these smoothed
states are printed. This output is placed in blocks with the same format as the corresponding
blocks for the Dash states.

The circular and cosine similarity matrices between the dash states are printed in two blocks.

[DASH_STATE_CIRCULAR_SIMILARITY]

1 2 3 4 5 6 7 8 9 10 11 12

1 1.00 0.41 0.51 0.54 0.56 0.47 0.51 0.52 0.56 0.47 0.35 0.39

2 0.41 1.00 0.72 0.61 0.49 0.58 0.59 0.48 0.41 0.39 0.53 0.50

...

11 0.35 0.53 0.58 0.54 0.39 0.63 0.60 0.53 0.46 0.42 1.00 0.75

12 0.39 0.50 0.62 0.64 0.37 0.56 0.58 0.60 0.42 0.44 0.75 1.00

[DASH_STATE_COSINE_SIMILARITY]

1 2 3 4 5 6 7 8 9 10 11 12

1 1.00 0.22 0.55 0.59 0.63 0.52 0.57 0.63 0.71 0.09 0.27 0.40

9

2 0.22 1.00 0.78 0.62 0.04 0.61 0.64 0.54 0.30 0.20 0.54 0.54

...

11 0.27 0.54 0.65 0.54 0.19 0.75 0.72 0.68 0.53 0.43 1.00 0.91

12 0.40 0.54 0.73 0.72 0.16 0.71 0.74 0.79 0.48 0.13 0.91 1.00

If a principal components analysis is performed, the results are printed in four blocks as follows.

[PCA_SUMMARY]

PC1 PC2 ... PC7 PC8

Variance 1.5849 1.0910 ... 0.9035 0.5034

Explained 0.1981 0.1364 ... 0.1129 0.0629

Cumulative 0.1981 0.3345 ... 0.9371 1.0000

[PCA_COEFFICIENTS]

PC1 PC2 ... PC7 PC8

0.0353 0.1326 ... 0.0684 0.0213

0.1342 0.4136 ... -0.1826 0.0210

0.0010 0.7001 ... 0.6221 -0.0225

-0.6583 0.0435 ... 0.0101 0.7116

0.6490 -0.0788 ... 0.0521 0.6991

-0.2247 -0.4481 ... 0.5789 -0.0529

0.2744 -0.2829 ... 0.4654 -0.0005

-0.0230 0.1798 ... 0.1429 0.0254

[PCA_WEIGHTS]

PC1 PC2 ... PC7 PC8

0.0012 0.0176 ... 0.0047 0.0005

0.0180 0.1711 ... 0.0333 0.0004

0.0000 0.4901 ... 0.3870 0.0005

0.4333 0.0019 ... 0.0001 0.5064

0.4212 0.0062 ... 0.0027 0.4888

0.0505 0.2008 ... 0.3352 0.0028

0.0753 0.0800 ... 0.2166 0.0000

0.0005 0.0323 ... 0.0204 0.0006

[PCA_CENTROID]

ANGLE1 ANGLE2 ... ANGLE7 ANGLE8

-64.7678 -38.4875 ... -4.3546 -2.0389

10

4 Installation

4.1 Obtaining the software

The software is distributed under the terms of the GNU General Public License, version 3 (see
the LICENSE file for details), and can be downloaded from

https://github.com/uop-ibbs/mdash

Binary packages are provided for GNU/Linux (RPM and DEB) and for Windows. The source
code is provided in two formats:

mdash-x.y.z.tar.bz2

mdash-x.y.z.zip

Use one of the commands

tar xjf dash-x.y.z.tar.bz2

unzip dash-x.y.z.zip

as appropriate to unpack the archive into a directory mdash-x.y.z.

4.2 Compiling and installing the programs

Instructions for building the programs are given in mdash-x.y.z/INSTALL.md.

4.3 Documentation

The files mdash.html, mdash.pdf and mdash.info in the directory mdash-x.y.z/src/dash

contain documentation in the indicated formats.

4.4 Authors

The DASH algorithm was conceived by Dave Salt, Brian Hudson and Martyn Ford. Matt Ellis
produced the first C++ implementation during his PhD, and several Erasmus students (Paul
Bonnel, Sylvain Lambert, Renaud Belloncle and Megane Bige) from IUT Belfort, France, have
contributed to the program.

4.5 Contact

Any comments, suggestions or bug reports should be addressed to the current maintainer:

Dr. David Whitley (dashsoftware@protonmail.com)

11

https://github.com/uop-ibbs/mdash

	Overview
	Running the program
	Command line interface
	Graphical interface
	Amberdash
	Replica exchange trajectories

	File Formats
	Input Files
	Output Files

	Installation
	Obtaining the software
	Compiling and installing the programs
	Documentation
	Authors
	Contact

