O3PRM Language Specification

Lionel Torti — Pierre-Henri Wuillemin
Laboratoire d’Informatique de Paris VI - UPMC

March 2, 2016

The O3PRM language purpose is to model PRMs using a strong object-oriented
syntax. This document purpose it not to explain PRMs but to provide a complete
specification of the O3PRM language. Tutorials and examples of PRMs can be
found on the O3PRM website.

Contents
11 O3PRM project structure] 2
[.L1 Compilationumits| 2
[.2 Headersyntax| o o v i e 3
2 Attribute type declaration| 4
2.1 Subtyping] 4
P2 Bullt-in types| 5
[3__Class and interface declaration/ 6
3.1 Reference slotdeclarationl. 6
3.2 Attrbute declaration| 7
R PT larationl 7
3.4 Rule based CPT declaration|. 8
B3 _Parametersl. o o v oo e e 8
B6_Formulas o oo 9
[B.7 TInterface’s abstract attributes] L 9
4 System declaration| 9
4.1 Instance declaration| e 9
B2 ATeCtalion] v v oot e 10
["Query unit declaration| 12
6 Kunction 12
7 O3PRM BNK 14

http://o3prm.lip6.fr 1/16 "‘-'

http://o3prm.lip6.fr/
http://o3prm.lip6.fr

1 O3PRM project structure

As in Java, the O3PRM language is made of compilation units that are placed in
packages. It is possible to encode in a single file an entire project but it is not
recommended. A package matches a specific directory and in each file we can
find at least one compilation unit. The following is a sample O3PRM project:

fr\
| 1lip6\
| | printers\
| | types.o3prm // types definition
| | powersupply.o3prm // class PowerSupply definition
| | equipment.o3prm // class Equipment definition
| | room.o3prm // class Room definition
| | computer.o3prm // class Computer definition
| | printer.o3prm // class Printer definition
| | example.o3prm // system Example definition
| | query.o3prmr // request query definition

File extensions can be used as indicator of the file’s compilation unit nature.
The following extensions are allowed: .o3prmr for queries, o3prm for every-
thing else (types, classes, interfaces and systems). It is good pratice to name a
file with the compilation unit it holds, for example in computer.o3prm should
contain the definition for the Computer class. If the file contains several com-
pilation units, you should use the most hight order unit to name the file. For
example, if you define types, classes and a system in one file, you should use the
system’s name.

1.1 Compilation units

There exists four different sorts of compilation units. A compilation unit declares
a specific element in the modeling process and can either be: an attribute’s type,
a class, an interface, a system or a query. Each compilation unit can start with a
header. Headers are where you declare imports statements.

<O3PRM> ::= [<header>] <compilation_unit> [(<compilation_unit>)]
<header> ::= <import>
<compilation_unit> ::= <type_unit> |

<class_unit> |
<system_unit> |
<query_unit>

http://o3prm.lip6.fr 2/16 "‘-.

http://o3prm.lip6.fr

1.2 Header syntax

Each compilation unit is declared in a namespace defined by the path from the
project’s root to the file’s name in wich it is declared. Directory separators are rep-
resented using dots. For example the file fr/1ip6/pritners/types.o3prm
defines the namespace fr.lip6.printers.types.

Namespaces can be used to import all of the compilation units defined in them,
since many compilation units will need units defined in other files. In such cases,
we say that a given compilation unit has dependencies which are declered using
the import keyword. The syntax is:

<import> ::= import <path> ";"
<path> ::= <word> [("." <word>)]
<word> = <letter> (<letter> | <digit>)
<letter> ::= "A"..'Z2" + Ta’.."z"+ " '
<integer> ::= <digit> <digit>=x
<float> ::= <integer> "." <integer>
<digit> =::='"0".."9’

An example:

import fr.skoob.printers.computer;

The import instruction is made of a module’s name.

The O3PRM interpreter should use an environment variable to know wich
directory to look up for resolving compilations units. It is recommanded that it
behaves like the CLASSPATH variable used by Java compilators.

Compilation units can be accessed through two names:

e Its simple name, as it is declared (for example Computer).

e Its full name, defined by its namespace and its declaration (for exampe
fr.lip6.printers.Computer).

In most case, refering to a compilation unit using its simple name will work, you
will need full names only to prevent name collision. Name collisions happen
when two compilation units have the same name but are declared in different
namespaces. In such sitatuation the O3PRM interpreter cannot resolve the name
and must raise an interpretation error.

Note that no matter how you refer to a compilation unit (either by its simple
name or full name) you must always import it’s namespace.

http://o3prm.lip6.fr 3/16 "‘-.

http://o3prm.lip6.fr

2 Attribute type declaration

The O3PRM language can only use discrete random variables that are either user-
defined or one of the three built-in types: boolean, int and real. User-
defined types are declared using the keyword type:

<type_unit> ::= <built_in> | <user_defined>
<user_defined> ::= <basic_type> | <subtype>
<basic_type> ::= type <word> <word> "," ("," <word>)+ ";"

The rule <basic_type> defines a random variable’s domain, the first word
is the type’s name and the following are the domain label’s names. There must be
at least two labels. The rule <subtype> is explained in the next section. Some
examples:

boolean exists;

int (0,9) power;

real (0, 90, 180) angle;
type t_state OK, NOK;

2.1 Subtyping

A subtype can be declared using the extends keyword. A subtype declaration
syntax is:

<subtype> ::= type <word> extends <word> <type_spec>
<type_spec> ::= <word> ":" <word> (<word> ":" <word>)+

The first <word> is the type’s name, the second the name of its supertype
and the rule <type_spec> defines label specializations: the first <word> is
the subtype’s label and the second <word> is the supertype’s label. A example
of subtype declaration:

type t_degraded extends t_state
OK: OK,

DYSFONCTION: NOK,

DEGRADED: NOK;

In this example, DYSFONCTION and DEGRADED are specializations of the
label NOK of type t_state. When declaring a subtype, it is mandatory that the
supertype is visible, i.e., :

e cither the supertype was declared in the same file before the subtype;

e or the supertype declaration unit has been imported.

http://o3prm.lip6.fr 4/16 "‘-.

http://o3prm.lip6.fr

2.2 Built-in types

The built-in types are: boolean, int and real. The boolean type is used
to represent binary random variables taking the values false or true. Note
that the order used is always false first and then t rue. The int must be used
to define random variables over ranges: int (0, 9) power defines a random
variable power over the domain integers from 0 to 9. The real type must be used
to define random variables discretized over continuous domains. For example,
real (0, 90, 180) angle defines a random variable with the two values
[0-901[, [90,180[. When defining a random variable with the real type
there must be at least three parameters. The syntax of built-in types is:

<built_in> ::=
boolean <word> ";" |
int " (" <digit>* "," <digit>x ")" <word> ";" |
real " (" <digit>x ("," <digit>x)+ ")" <word> ";"

http://o3prm.lip6.fr 5/16 ‘-.

http://o3prm.lip6.fr

3 Class and interface declaration

Classes and interfaces are declared as follow:

<class_unit> ::= <class> | <interface>
<class> ::= class <word> [extends <word>] "{" <class_elt>x "}"
<class_elt> ::= <reference_slot> | <attribute> | <parameter>
<interface> ::= interface <word> [extends <word>]

"{" <interface_elt> "}"
<interface_elt> ::= <reference_slot> | <abstract_attr>

The first word is the class name and the second (if any) the class superclass.
An example:

class A {
// reference slots and attributes declaration

}

class B extends A {
// This class extends class A
// We say that B is a subclass of A
// And A the superclass of B.

}

3.1 Reference slot declaration

In the O3PRM language, simple (1 to 1) and complex (1 to N) reference slots are
declared differently. Simple reference slots can only refer to a single instance and
complex reference are arrays. The syntax for declaring a reference slot is:

<reference_slot> ::= <word> ["[" "]"] <word> ";"

The first word is the reference slot range’s name, we do not called it it’s type
since it could be ambiguous with attributes types. If it is complex [] are added
as suffixes to the range’s name and the last word is the reference slot’s name. The
following is an example of two reference slots declaration:

// Simple reference slot

A refh;
// Complex reference slot
B[] refB;

http://o3prm.lip6.fr 6/16 ‘-.

http://o3prm.lip6.fr

3.2 Attribute declaration

Attributes are declared as follows:

<attribute> ::= <word> <word> [dependson <parents>]
(<CPT> | <function>) ";"

<parents> ::= <path> ("," <path>)=x

<CPT> ::= "{" (<raw_CPT> | <rule_CPT>) "}"

The first word is the attribute’s type, the second its name. Dependencies are
defined as a list of parents separated by commas. Each parent is defined by a
<path>, i.e., a list of reference slots ending by an attribute. We will detail
CPTs declaration in the next section. Functions will be detailed in section |6l The
following is an example of attribute declaration:

// An attribute with no parents

a_type a_name {
cpt_declaration

bi

// An attribute with two parents

another_type another_name dependson parent_1, parent_2 {
cpt_declaration

i

3.3 Raw CPT declaration

When declaring a raw CPT, all values of the CPT must be given. In such cases,
the value’s order is paramount. The declaration used in O3PRM is by columns,
1.e., each column in the CPT must sum to one. Let us consider the boolean
attributes X, Y and Z such that X depends on Y and Z. The first value in X’s CPT
declaration will be the probability P(X = false|Y = false, Z = false) and the
next value is done by increasing the domain of the last attribute by one. In this
case, the second value is the probability P(X = false|Y = false,Z = true).
When the last attribute reached its last value, we set it back to its first value and
increase the previous attribute. For example, the third value of X’s CPT would be
the probability P(X = false|Y = true,Z = false). The following illustrates
how we can use comments to make raw CPT definitions easier to read.

boolean X dependson Y, Z {

// Y= | false | true

// 7= | false | true | false | true |
/* false =/ [1.0, 0.3, 1.0, 0.01,
/* true */ 0.0, 0.7, 0.0, 0.99]

}i

http://o3prm.lip6.fr 7/16 "‘-.

http://o3prm.lip6.fr

The CPT declaration is dependent on the order in which the parents are de-
clared. The syntax of a raw CPT declaration is straightforward:

<raw_CPT> ::= "[" <float>+ ("," <float>+)+ "]"

3.4 Rule based CPT declaration

Rule based declarations exploit wildcards to reduce the number of parameters for
CPT with redundant values. Its syntax is:

<rule_CPT> ::= (<word> ("," <word>)x* ":" <float> ";")+

There is no limit in the number of rules and when two rules overlap the last
rule takes precedence. The following is an example of rule based declaration using
the previous example:

boolean X dependson Y, Z {

// Y, 7 X=false, X=true
*, false: 1.0, 0.0;
true, true: 0.01, 0.99;
false, true: 0.3, 0.7;

}i

3.5 Parameters

Parameters are declared using the following syntax:

<parameter> ::= <int_parameter> | <real_parameter>
<int_parameter> ::= "int" <word> default <integer> ";"
<real_parameter> ::= "real" <word> default <float> ";"

Parameters are either real or integers constants. They are used in CPT defini-
tions to define values using formulas. Some examples:

// An integer parameter
int t = 3600;

// A real parameter

real lambda default 0.003;

A parameter value can be set at instantiation.

http://o3prm.lip6.fr 8/16 ‘-.

http://o3prm.lip6.fr

3.6 Formulas

It is possible to use formulas in place of float numers to define an attribute’s CPT.
The formula must be enclosed between quotes and its syntax is implementation
specific. For example:

class A {
int t = 3600;
real lambda = 0.003;

bool state { ["1 - exp(-lambdaxt)", "exp(-lambdaxt)"] };
}

3.7 Interface’s abstract attributes

An abstract attribute in an interface declaration syntax is:

<abstract_attr> ::= <word> <word> ";"

Where the first <word> is the abstract attribute’s type and the second its name.

4 System declaration

A system is declared as follow:

<system> ::= system <word> "{" <system_elt>x "}"
<system_elt> ::= <instance> | <affectation>

The first word is the system’s name. A system is composed of instance decla-
rations and affectations. Affectations assign an instance to an instance’s reference
slot. The following illustrates a system declaration:

system name {

// body
}

4.1 Instance declaration

The syntax to declare an instance in a system is:

<instance> ::= <word> ["[" digitx "]"] <word> ";"

The first word is the instance’s class and the second its name. For example, if
we have a class A we could declare the following instance:

http://o3prm.lip6.fr 9/16 "‘-.

http://o3prm.lip6.fr

A an_instance;

We may want to declare arrays of instances. To do so we need to add [n] as
a suffix to the instance’s type, where n is the number of instances already added
in the array. if n = 0 then we can simply write [].

// An empty array of instances
A_class|[] a_name;

// A array of 5 instances
A_class[5] another_name;

You can also specify values for parameters when instantiating a class. The
syntax to do so is:

<instance> ::= <word> <word> " (" <parameters> ")" ";"

<parameters> ::= parameter ("," instanceParameter) x

<instanceParameter> ::= <word>"=" (<integer>|<float>)
An example:

// We declare an instance of A_class where a_param equals 0.001
A_class a_name (a_param=0.001);

4.2 Affectation

<affectation> ::= <path> += <word> ";"
<path> = <word> ";"

It is possible to add instances into an array, using the += operator:

// Declaring some instances
A_class x;

A_class y;

A_class z;

// An empty array of instances
A_class|[] array;

// Adding instances to array
array += Xx;

array += y;

array += z;

Reference affectation is done using the = operator:

http://o3prm.lip6.fr 10/16 .'

http://o3prm.lip6.fr

class A {
boolean X {[0.5, 0.51};

class B {
A myRef;

system S {
// declaring two instances
A a;
B b;
// Affecting b’s reference to a
b.myRef = a;

In the case of multiple references, we can either use the = to affect an array or
the += operator to add instance one by one:

class A {
boolean X {[0.5, 0.51};

class B {
A myRef[];

system S1 {
// declaring an array of five instances of A.
A[5] a;
// declaring an instance of B
B b;
// Affecting b’s reference to a
b.myRef = a;
}
// An alternative declaration
system S2 {
// declaring three instances of A
A al;
A a2;
A a3;
// declaring an instance of B
B b;
// Affecting b’s reference to a
b.myRef += al;
b.myRef += a2;
b.myRef += a3;

http://o3prm.lip6.fr 11/16 ."-.

http://o3prm.lip6.fr

5 Query unit declaration

A query unit is defined using the keyword request. Its syntax is the following:

<guery_unit> ::= request <word> "{" <query_elt>x "}"
<query_elt> ::= <observation> | <query>
<observation> ::= (<path> = <word>) |

(unobserved <path>)

m.mn
14

<query> ::= "?" <path> ";"

The first word is the query’s name. In a query unit we can alternate between
observations and queries. An observation observe an attribute with a given value.
Evidence are affected using the = operator. A query over attribute X asks to infer
the probability P(X|e) where e is evidence over attributes in the system. This
is done using the ? operator. The keyword unobserve can be used to remove
evidence over an attribute.

request myQuery {
// adding evidence
mySystem.anObject.aVariable = true;
mySystem.anotherObject.avVariable = 3;
mySystem.anotherObject.anotherVariable = false;
// asking to infer some probability value given evidence
? mySystem.anObject.anotherVariable;
// remove evidence over an attribute
unobserve mySystem.anObject.aVariable;

6 Functions

Functions in O3PRM are considered as tools to define attributes CPTs. They re-
place the CPT declaration by a specific syntax depending to which family the
function belongs to. There exit three kinds of functions in O3PRM. The first
kind contains built-in functions called aggregators. These functions are used to
quantify information hold in multiple reference slots. The second sort contains
deterministic functions and the third probabilistic functions. The last two sorts
of functions are not built-in functions and are implementation specific. We only
provide a generic syntax to keep uniformity between different O3PRM implemen-
tations. All functions share the same syntax:

<function> ::= ("=" | """) <word> "(" [<args>] ")"
<args ::= <word> ("," <word>)~

http://o3prm.lip6.fr 12/16 "‘-.

http://o3prm.lip6.fr

The use of = is reserved for deterministic functions and ~ for probabilistic
functions. There are only four built-in functions in the O3PRM language that are
deterministic functions called aggregators. There are five built-in aggregators in
the O3PRM language: min, max, exists, forall and count.

The min and max functions require a single parameter: a list of slot chains
pointing to attributes. The attributes must all be of the same type or share some
common supertype. If the common type is not a int, then the type’s values order
is used to compute the min and max values.

class A {
// Some declarations
int (0,10) myMax = max([chain_1, chain_2, ...1);
// Some declarations
int (0,10) myMin = max(chain_1);

If there is only one element in the list of slot chains the [] are optional. The
exists and forall require two parameters: a list of slot chains and a value.
As for min and max, all attributes referenced in the slot chains list must share
a common type or supertype. The value must be a valid value of that common
supertype. exists and forall attribute type must always be a boolean.

class A {
// Some declarations
boolean myExists = exists([chain_1, chain_2, ...], a_value);

}

The count aggregator behavior is dependent on it’s type wich must be of the
built-in int type. Then the last value of the aggretors type is interpreted as at least
N occurence of "value”.

type int (0, 5) myRange;

class A {
myRange myCount = exists([chain_1, chain_2, ...], a_value);

}

http://o3prm.lip6.fr 13/16 "‘-.

http://o3prm.lip6.fr

7 O3PRM BNF

<O3PRM> ::= [<header>] <compilation_unit> [(<compilation_unit>)]
<header> = <import>

<import> ::= import <path> ";"

<compilation_unit> ::= <type_unit> |

<class_unit> |
<system_unit> |
<query_unit>

<type_unit> ::= <built_in> | <user_defined>

<user_defined> ::= <basic_type> | <subtype>

<basic_type> ::= type <word> <word> "," ("," <word>)+ ";"
<subtype> ::= type <word> extends <word> <type_spec>
<type_spec> ::= <word> ":" <word> (<word> ":" <word>)+

<built_in> ::=
boolean <word> ";" |
int " (" <digit>% "," <digit>x ")" <word> ";" |
real " (" <digit>* ("," <digit>x)+ ")" <word> ";"

<class_unit> ::= <class> | <interface>

<class> ::= class <word> [extends <word>] "{" <class_elt>x "}"

<class_elt> ::= <reference_slot> | <attribute> | <parameter>

<interface> ::= interface <word> [extends <word>]
"{" <interface_elt> "}"
<interface_elt> ::= <reference_slot> | <abstract_attr>

<reference_slot> ::= [internal] <word> ["[" "]"] <word> ";"

<attribute> ::= <word> <word> [dependson <parents>]
(<CPT> | <function>) ";"

<parents> ::= <path> ("," <path>)=~

<abstract_attr> ::= <word> <word> ";"

<CPT> ::= "{" (<raw_CPT> | <rule_CPT>) "}"
<raw_CPT> ::= "[" <float>+ ("," <float>+)+ "]"
<rule_CPT> ::= (<word> ("," <word>)x ":" <float> ";")+

<parameter> ::= <int_parameter> | <real_parameter>
<int_parameter> ::= "int" <word> default <integer> ";"
<real_parameter> ::= "real" <word> default <float> ";"

<function> ::= ("=" | " ") <word> "(" [<args>] ")"
<args ::= <word> ("," <word>)«

http://o3prm.lip6.fr 14/16 ."-.

http://o3prm.lip6.fr

<system> ::= system <word> "{" <system_elt>x "}"

<system_elt> ::= <instance> | <affectation>

<instance> ::= <word> ["[" digit*x "]"] <word> ";"
<instance> = <word> <word> " (" <parameters> ")" ";"
<parameters> ::= instanceParameter ("," instanceParameter) *
instanceParameter> ::= <word>"=" (<integer>|<float>)
<affectation> ::= <path> += <word> ";" |

<path> = <word> ";"

<guery_unit> ::= request <word> "{" <query_elt>x "}"
<query_elt> ::= <observation> | <query>
<observation> ::= (<path> = <word>) |

(unobserved <path>)

m.nw
4

<query> ::= "?" <path> ";"

<word> ::= <letter> (<letter> | <digit>)
<letter> ::= 'A" . .72 + Ta’. .. z"+ "/
<integer> ::= <digit> <digit>=«

<float> ::= <integer> "." <integer>
<digit> ::= "0".."9'

<path> ::= <word> [("." <word>)]
References

[Torti et al., 2011] Torti, L., Gonzales, C., and Wuillemin, P.-H. (2011). Patterns
discovery for efficient structured probabilistic inference patterns discovery for
efficient structured probabilistic inference patterns discovery for efficient struc-
tured probabilistic inference patterns discovery for efficient structured prob-
abilistic inference. In Proceedings of the Fifth International Conference on
Scalable Uncertainty Management Fifth International Conference on Scalable
Uncertainty.

[Torti and Wuillemin, 2010] Torti, L. and Wuillemin, P.-H. (2010). Structured
value elimination with d-separation analysis. In Proceedings of the 23rd
Florida Artificial Intelligence Research Society Conference.

[Torti et al., 2010] Torti, L., Wuillemin, P.-H., and Gonzales, C. (2010). Reinforc-
ing the object-oriented aspect of probabilistic relational models. In Petri Myl-
lymaiki, T. R. and Jaakkola, T., editors, Proceedings of the The Fifth European
Workshop on Probabilistic Graphical Models. HIIT Publications.

http://o3prm.lip6.fr 15/16 "‘-.

http://o3prm.lip6.fr

[Wuillemin and Torti, 2012] Wuillemin, P.-H. and Torti, L. (2012). Structured
probabilistic inference. [International Journal of Approximate Reasoning,

53(7):946 — 968.

http://o3prm.lip6.fr 16/16 ."-.

http://o3prm.lip6.fr

	O3PRM project structure
	Compilation units
	Header syntax

	Attribute type declaration
	Subtyping
	Built-in types

	Class and interface declaration
	Reference slot declaration
	Attribute declaration
	Raw CPT declaration
	Rule based CPT declaration
	Parameters
	Formulas
	Interface's abstract attributes

	System declaration
	Instance declaration
	Affectation

	Query unit declaration
	Functions
	O3PRM BNF

